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ABSTRACT

The paper describes the theoretical aspects of the
latest University of New Brunswick gravimetric solution
of the Canadian geoid. Stokes's imtegral convolution
approach reformulated for a higher-order reference
field, GEM9 in this case, is used. In addition to the
theoretical aspects, an example of the actual solution for
eastern Canada is shown. Comparisons with Rapp’s 1983
and Wenzel's GPMI solutions, SEASAT altimetry and
Canadian first-order Doppler points are also described.

1. INTRODUCTION

In this paper, we have restated the classical boundary
value problem of geodesy and reformulated the solution.
This reformulation led to the derivation of expressions
for corrections to free-air gravity anomalies due to the
presence of masses above the geoid, i.e., due to
topography, and correction to the evaluated geoidal
height due to the formulation of the boundary valuc
problem, i.e., the indirect effect. These are not new, but
we could not find them in the literature and decided to
include them here for the sake of completeness.

To make use of the integrity of the long wavelength
part of the geoid determined from satellite orbit
perturbations, we use the GEM9 solution for a higher-
order reference spheroid. (We use the word spheroid
in its literary meaning—a sphere-like body--rather than
to describe a bi-axial ellipsoid.) For easy comparisons,
we relate this reference spheroid to the GRS80. The use
of a higher-order reference spheroid and reference

gravity field results in the necessity to reformulate the
integration kernel in the Stokes convolution. This new
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kernel we call the spheroidal kernel. 1t differs from
the standard Stokes kernel by the fact that it lacks the low
frequency part and tapers off more rapidly. Thus the
integration does not have to be carried out too far.

The numerical integration is done in a more or less
standard way. We use a 10 by 10 minute rectangular
innermost zone in which the integration is done semi-
analytically, using point gravity anomalies. In the inner
zone, whose outside boundary is also rectangular (2 by 2
degrees), we use a purely numerical approach employing
5 by 5 minute mean gravity anomalies. In the outer zone,
bounded outside by a radius of 6°, 1 by | degree mean
gravity anomalies are used. To minimize the error of
integration truncated at 6° radius, the spheroidal kernel
was modified using Molodenskij's truncation
coefficients. In the inner and outer zone integration, the
modified spheroidal kernel is approximated by a linear
form to further speed up the computations, We have
determined experimentally that the discretization error
of this numerical integration is not more than 10 cm.

We have produced several iterations of this
gravimetric geoid for the area of 42° < ¢ < 70° and 219°E
<A < 317°E, i.e., about 2 x 107 km?2, on a 10 by 10
minute geographical grid. The first solution was
produced for the Geodetic Survey of Canada at the
beginning of 1986 under a research contract.
Comparisons of our latest, December 1986, geoid with
Rapp's 1983 (180, 180) and Wenzel's 1985 GPM 1|
truncated to (180, 180) solutions show an r.m.s. error of
about 1 metre. Comparison with 212 Doppler points in
Canada shows a positive bias of 79 cm and an r.m.s.
error of 1.7 m. The fit to SEASAT altimetry in Hudson
Bay and in the eastern Canadian offshore is significantly



better, with a negative bias of 19 cm and an r.m.s. efror
of 53 cm.

Work is now going forward on an implementation of
a scheme for the incorporation of other kinds of data for
further improvement of the geoid.

2. FORMULATION OF GEODETIC
BOUNDARY VALUE PROBLEM

The classical formulation of the geodetic boundary
value problem reads as follows: Let the disturbing
potential T be defined by

T=-W-U, (1)

where W is the actual gravity potential, and U is an
appropriately chosen reference potential. If the
centrifugal parts of W and U are identical, then the
Laplace equation

V2T =0 (2)

is valid outside the gravitating masses of the earth. To
satisfy the Laplace equation, we shall assume, for the
time being, that all these masses are trapped inside the
geoid; the consequences of this condition not being
rigorously satisfied will be discussed below.

Let us assume further that U has been chosen so that it
has a constant value U,, equal to the actual gravity
potential value W, on the geoid, on a geocentric

reference ellipsoid. Then the height N of the geoid above
the reference ellipsoid is given by Bruns's formula:

N =TgHo» (3)

where the subscript G refers to the geoid, while Yo is the

normal gravity on the reference ellipsoid [Heiskanen and
Moritz, 1967].

Next, we take a derivative of eqn. (1) with respect to
the outer normal n of the reference ellipsoid and evaluate
it on the geoid to get

JT/on|G = dW/dnlg - dU/onlG - 4)
Here, dU/on|G equals -y exactly, while 9W/dnig=-gG to

a sufficient degree of accuracy (better than 10 uGal).
Adding and subtracting Y, we have

47
dT/onjG =-8G +Yo + ¥G- Yo (5)

which can be rewritten, using the same degree of
approximation as for the derivative above, as

Ag = - OT/9H|G + dyidnig N, (6)

where the height H is reckoned along the actual
plumbline. The vertical gradient of normal gravity in

‘spherical’ approximation (good to the order of
flattening) equals 2Yy/R and realizing that, according to
Bruns's formula, Ny, equals Tg, we get finally

Ag = - 0T/9HIG - (ZR)TG - 0))

Equation (7) shows that Ag can serve as boundary
values of mixed type for the solution of the Laplace egh.
(2). We note that the boundary values pertain to the
geoid and not, as incomectly stated by Vani€ek and
Krakiwsky [1982, p.516], to the reference ellipsoid.
Even though the gravity anomaly refers to either of the
two surfaces (ellipsoid or geoid), the right-hand side of
eqn. (7) refers to the geoid only.

The solution T to the geodetic boundary value
problem is usually sought in terms of Stokes's integral
[Heiskanen and Moritz, 1967]. This integral can then be
converted into Stokes's formula for geoidal heights,

N, M) = Ri@m) $P Ag(d, M) S(wydv ., (8)

where dv is an element of a spatial angle. It should be
noted that Stokes's formula is blind to the selection of Uo,
and thus Ag,, i.e., the mean global value of gravity

anomaly. The computed value N always corresponds to
Ago = 0 and is thus referred to as the "best fitting”

geocentric reference ellipsoid, whatever its size is. The
Stokes function S, a function of spherical distance ¥

between (¢, A) and (¢', X), has a series expansion

S(y) = X (2k+1)/(k-1) Pg(cosy) )]
ka2

with Py being Legendre polynomials of degree k
{Abramowitz and Stegun, 1964).
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3. CORRECTIONS

The above solution assumes the disturbing potential T
to be harmonic outside the geoid, i.e., the masses outside
the geoid to be absent. This condition is violated by both
the atmosphere and the topographical masses of the
earth. The cffects of both now have to be removed.

The atmospheric masses attract any element on the
surface of the earth, thus changing the gravity reading to
g + dga. This atmospheric attraction effect was

investigated by Ecker and Mittermayer [1969] and tables
for 8ga have been published by IAG [1971). The effect is
a function of height and varies between -0.87 mGal and
-0.54 mGal for heights ranging from 0 to 4 km, The
second-order effect caused by the irregularity of the
lower boundary of the atmosphere [Vanitek and
Krakiwsky, 1982, p.166] is not considered here.

Using free-air gravity anomaly in eqn. (8) is
equivalent to the ‘squashing’ of all the topographical
masses onto the geoid. So dislocated masses satisfy the
basic assumption of the boundary value problem. But
they also change the gravitational attraction on the
earth's surface: this trick introduces a topographical
attraction effect g which has to be added to the free-

air anomaly Ag before this is used in the Stokes formula,

To evaluate this topographical effect, it is adequate to
approximate the geoid by a horizontal plane and assign a
constant density ¢ to all the topographical masses (cf.
Figure 1). For integration areas up to 6° and
topographic height differences up to 2 km, the planar

approximation leads to errors less than 1:10-3. A mass
element dm Iocated at a height H + z, below point Pg,

Geoid

FIGURE 1
Computation of the topographical attraction effect.

causes at point P an increase of gravity potential by dW =
dm/L. The same element placed onto the geoid causes at
P an increase by dW'=dm/L'. Hence, when dm is
‘squashed’ onto the geoid (from its original position Hy +
z above the geoid), the observer at P, will experience a
change in gravity equal to

dgT = 0/oh (AW - dW")|p—0 . (10)

The total change in g at point P4 is obtained through

integration over all the mass elements dm contained in
the topography. We get

2 o« HoHa
wW=Go [ | | WL dz d! do (11)
0e0 0 z=Hp

M e
W=Co | [ /Hgdlde. (12)
a=0 (=0

It can be shown that the infinite plate of constant
thickness Hy and density o causes at Py a gravitational
attraction identical to that caused by the same masses
concentrated at the lower surface of this plate (i.e., on the
geoid). These two effects thus can be subtracted in eqns.
(11) and (12) giving for the topographical effect (cf. eqn.
a0

N = Hq-HA
dgr=Gooh{[ [ ([ L1ldz- (13)
o=0 0 z=0

- (Hg-Ha)L-11 ! d! dedp—o .

Expressing L-! and L1 in a power series of Ha//, h/!,
and z/l to an accuracy of second-order terms and

performing the differentiation of the subintegral
function with respect to h, we obtain;

MM e
Ser=12Go | | (HQ2-HaA2I3dA, (14)
a=0 [=0

‘where dA = [ dl do. We note that because of the rapid
decrease of the kernel I3 in the above integral, the
integration has to be performed only in the immediate
neighbourhood of the point of interest.

The (mathematically conducted) ‘squashing’ of the
topographical masses onto the geoid — and the



subsequent correction of observed free-air anomalies —

has the unfortunate consequence that the computed geoid
is distorted. This is the Indirect effect [Heiskanen and
Mr  x, 1967] that can be computed as

SN = dWify, (15)

where W7 is the difference of gravitational potentials of
the actual topographical masses and squashed masses.
This difference must be reckoned on the geoid and can be

evaluated in planar approximation from equations
similar to eqns. (11) and (12) as (cf. Figure 2):

X e HQ
Wi=Go | | [ WL dldodz
a=0 =0 z=0
(16)
=
Wi=Go | | Hodda .
a=0 =0

PA' Geoid

FIGURE 2
Computation of the indirect effect.

It is expedient to evaluate the indirect effect potential
8Wy = Wy - W[ separately for the plate, P, of uniform
thickness Hp and for the excess of the topography with

respect to this plate. Equations (16) yield:

p- A Hy
SWp=Gol [ [[| W2+z2yr12dz-Hy) dl da
=l =) z=
(17)
T e
8Wir=Go | [ (] (2422512 dz- Hg + Ha) d! do.
! =0 IO zaH,
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The first integral is solved by integrating first with
respect to o and / getting

Hy,
SWip = 2nGolim {§ [V(2 +22)-z)dz-1Ha}.
[0 z=0

Integration with respect to z, expansion of the square
root and logarithmic functions into power series and
performance of the limiting operation gives

SWp = -nGoHAZ. (18)

The second integral is solved by first integrating with

respect to z and then expanding the square root and
logarithmic functions into power series. We then get

2w o .
SWir2-Gof6] | (HQd-HaA3dA . (19)
a0 =0
Combining eqns. (18) and (19} we finally obtain:
8Ny £ - (rGo)y1 Ha2 -

M oo
-Goy U6 | | (Hg3-Ha3)3dA.
D=0

(20

Here, once more, the rapid decrease of /-3 guarantees a
rapid convergence of the integration which,
consequently, can be done only over the immediate
neighbourhood of the point of interest.

4, REFORMULATION OF STOKES'S
SOLUTION FOR A HIGHER-ORDER
REFERENCE FIELD.

Stokes's solution, in its original form, of the geodetic
boundary value problem presupposes a geocentric
ellipsoid for the reference surface. The integration (8)
has to be carried out theoretically to a distance y = 180°
and practically to a distance of many tens of degrees
from the point of interest, i.e., to a distance of many
thousands of kilometres. Yet the coverage with
terrestrial data is quite inhomogeneous — while at places
it is almost adequate on land, it leaves a lot to be desired
at sea. This problem is alleviated if a higher-order
reference surface is used: the Stokes function that refers
to a higher-order surface (higher-order spheroid) drops
down to zero more rapidly than the ordinary (second
order) Stokes function (eqn. (9)) and the integration does
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not have to be carried out that far (see, e.g., Vanféek and
Krakiwsky [1982]). We call such Stokes's function a
spheroidal Stokes's function. If the reference
spheroid is given by spherical harmonic functions up to
degree and order /, then the spheroidal Stokes function
that should be used on this spheroid is (see, Vanféek and
Krakiwsky [1982, p.574))

Sti1= T (2k+1)(k-1) P{cosy) . 21)
kui+l

The graph of such spheroidal Stokes's function for =20
is shown in Figure 3.
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FIGURE 3
Graph of the spheroidal Stokes function S21.

The additional advantage of using the higher-order
reference field is that the detrimental effect of the
spherical approximation used in the derivation of
Stokes's formula (see above) is significantly attenuated.
This is because the effect is mostly of long wavelengths
{Rapp, 1981] which disappear when the spheroidal Stokes
function is used.

The low degree gravitational field, and thus the long
wavelength part of the geoid, is quite well determined
through the analysis of satellite orbits. It is, therefore,
natural to take a satellite determined low-order field to
define a reference spheroid which would then be used to
refer the higher-order (more detailed) geoidal features
to. This is the approach we have chosen to follow here,
having had good experience with it before [Vaniéek and
John, 1983].

S. SELECTION OF THE REFERENCE
SPHEROID )

Out of the variety of available satellite derived
potential fields, we have chosen to adopt the GEM9
[Lerch et al., 1979], the time proven pure satellite
solution. GEM$ is complete to degree and order 20, and
no improvement to this solution from terrestrial data has
been attempted here. This means that only features
smaller (in spatial extent) than 9° (or 1000 km) will have
to be picked up by the terrestrial gravity contribution.

Further, to be able later to compare our results to
those of other people, we have decided to refer the
GEM?9 solution to the Geodetic Reference System 1980
(GRS80). The GRS80 normal potential is given by
[Moritz, 1980]:

UgRsso (1, ¢, A) = GM*r! [1 -
L @mRIno* Yno®9, NI,  (22)
n=2,4,6,8

where the asterisk is used to distinguish the GRS80 values
from corresponding GEM9 values. The GEM9 defined
disturbing potential T' referred to GRS80 is then

T(r, ¢, A) = (GM - GM*)r! +
20 n
+GMalZ ¥ (amn+! (AVy Y pm® + AKpm Ym®), (23)
nw2 me

where (GM-GM*)/r represents a scale change, To(r) =
Uo(r), in the reference (normal) potential between
GRS80 and GEM9, while AJ, AK are the differences

between the actual (GEM9) and normal (GRS80)
potential coefficients.

In eqn. (23), all AK— are clearly equal to zero and so
are the AJ— for n#2,4,6,8, or m#0. For n=2,4,6,8 we
find



Mno = Jno - GM*I(GM) (a*la)n T*no ’ (24)

where J*,, are normalized GRS80 coefficients (through
division by 'J(2n+l)) to conform with the expression s
for J;o used in the definition of the GEM9 system.
Multiplication by.

GM*/GM (a%/a)" 2 1 - (0.351 + 0.470 n) X 10-6(25)

of the normalized GRS80 coefficients [Moritz, 1980]
yields

J'20 = 484.166 86 x 10-6,

J'49=-0.790 30 x 10-6,

J'60=0.001 69 x 10-6, (26)
Jgo=-3.5x10-12,

Equation (24) then gives

Ay = 0.000 68 X 106,

Alag = -0.248 76 x 10-6,

AJgp = -0.149 52 x 10-6, 27
Algo=1Jgo.

Finally, eqn. (23) divided by vy gives the height Nggmg of
jhe GEM9-defined reference spheroid above the GRS80
reference ellipsoid. We note that when, at the end, the
geoidal height is sought above the GRS80 reference
ellipsoid, NgGEwmg has to be added to the 8N obtained from
terrestrial gravity anomalies through (integral)
convolution with the spheroidal Stokes function S; (cf.
§4).

The error in the GEM9 reference spheroid with

respect to the GRS80 reference ellipsoid can be obtained
from the GEM9 degree variances 6,2 [Lerch et al.,

1984).  Assuming the potential coefficients to be

uncorrelated, we get for the average standard deviation
1n NGemy:

20
8NGeme =RV (2n0+1)5,2. (28)
n=2

The average standard deviation reaches the value of
about 1.75 m for degree 20. 1t must be noted, however,
that this is a purely long wavelength error (= 1000 km).

|

6. NUMERICAL INTEGRATION

~ The integration of terrestrial gravity anomalies with
the spheroidal Stokes function has to be done
numerically, For the sake of computational economy, it
is, of course, desirable to limit the size of the integration
area as much as possible without compromising the
accuracy to an unacceptable degree. It is, as stated above,
much easier to do this with the spheroidal than the
ellipsoidal Stokes functions.

We have decided to use a spherical cap with as small a
radius Y, as possible. Not to degrade the accuracy

unnecessarily through the truncation of the radius of the

- integration area from =t to y,, we modify the spheroidal

Stokes function following the idea of trumcation

coefficients [Molodenskij et al., 1960]. We get for the
modified spheroidal Stokes function S;m(y) the

following expression:

i
St 1MW) = Sp(¥) - £ 1/2(2i+1) 4 P; (cosy) , (29)
i~0

where the t; coefficients are determined from the system
of linear equations:

I
2 (2k+l) eplwo) e = 2QiH(y,) Vi (30)
k=0

Here

eik(Wo) = | Pi(cosy) P(cosy) siny dy,  (31)

V=¥o
and
i
Qilve) = Qvo) -Z @i+1G-D) eyio) s (32)
j=2
where
QW= SwPosysiyay  (33)

¥=¥o
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are the Molodenskij truncation coefficients. Paul's

[1973} recursive algorithm is used to compute these
truncation coefficients. The spheroidal kernel S7¢ and its

modified form Sy M for y,=6" are shown in Figure 4. It
should be pointed out that other approaches to kernel
modification exist (see, e.g., Jekeli [1981] or Sjoberg
[1986]). We are, at present, looking into possible
improvements to our solution using a different
modification.

30
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FIGURE 4 '
Spherical Stokes's kernel S, and its modified fo

Sqm,

The following point must be noted: Because of
orthogonalities, it does not matter in the convolution of
Ag with the original Sy, if Ag has had the low degree
congtituents (corresponding to the reference spheroid)
subtracted from it or not (cf. Vanifek and Krakiwsky
[1982, p.574]). It does matter, however, when
integration with the modified kernel $m is used: the low
degree constituents must be subtracted from Ag
beforehand because the modified kernel is no longer
‘blind’ to low frequencies. For the GEM9 reference
spheroid and GRS80 normal gravity, we have

Ag' = Ag - AEGEMY » (34)

where Aggemo is obtained from T'Gemoe (eqn. (23
using eqn. (7):

ABGEMO = - ITGEMY/Or- 2R* I T'grme . (35)

A 1" x 1" mesh in ¢, A coordinates is the basi
graticule for the numerical integration. The integratio
cap is approximated by the area covered with 1° X 1
ellipsoidal rectangles whose centres are no further awa
from the point of interest than y, degrees. Thi
approximated area is then divided into three zones:

(1) The innermost zone, which covers the immediat
10" x 10" neighbourhood of the point of interest (1(
x 20' for high latitudes). Its boundaries coincid
with the grid lines of the §' X §' gravity anomaly fil
(see section 7) and the point of interest thus may no
be in the exact centre of the innermost zone.

(2) The inner zone covers an area of 2° X 2" (minu
the innermost zone). its outer boundaries coincid-
with the grid lines of the 1° X 1° gravity anomal:
file (see section 7).

(3} The outer zone covers the area between the oute
boundary of the inner zone and the boundary of the
whole integration area.

Subdivision into the three zones was introduced t
allow for the use of different mean gravity anomaly dat:
sets and different, as efficient as possible, integratios
techniques. The exact location of the two innne
(rectangular) boundaries does not seem to matter ver
much: even significant shifts of these boundaries caus.
changes of resulting 8N of the order of at most a fev
centimetres. On the other hand, location of the outsid
boundary, i.e., of y,, matters a great deal. After som:
experimentation (see Vani&ek et al. [1986a]) we havt
settled on y,=6". This selection ensures that the
discretization error (error due to the numerica
evaluation of Stokes's formula)} is below 10 centimetres.

The integration in the innermost zone is done in :
semi-analytical way. First, a second-order algebraic
surface (with 6 mixed algebraic terms) is fitted in the
least-squares sense to all the available point gravity
anomalies available in the innermost zone. If there are
not enough data, the number of terms is lowered by 2
then by another 1 at which instance the four §' x 5' mear
anomalies falling into the innermost zone are taker
instead of point anomalies. The decision as to whether tc
lower the order of the surface is based on the value of the
ratio of the smallest and largest eigenvalues of the



normal equations for the surface coefficients. In the
north, where the 5' x 5' mean anomalies arc replaced by

5' %X 10’ mean anomalies (sce below), the selection is

modified so that the default value is the average of the
two mean anomalies.

To an accuracy of at least 0.01%, the modified
spheroidal Stokes function S;, ;™ in the innermost zone

can be replaced by {Vani€ek et al., 1986a]:
St 1™(W, Wo) = 2y - 3 Inyi2 + C(yo) , (36)

where 2/y is the dominant term,

! !
Clyo) =-4-% Qi+1)/(i-1) - T 1/2(2i+1) ti(yo) , (37)
=2 i=0

and the ti-coefficients are given by eqn. (30). The
product of the two series (one for $;, ;™ and one for Ag),
now containing 24 terms, can be ordered then in
descending order of significance. We retain onty the 8
most significant terms and integrate these term by term.
Finally, re-arrangement of these 8 terms yields, for the
innermost zone contribution:

5
T NnM= T §i(vo), (38)
j=0

where &; are the least-squares estimates of the anomaly
surface coefficients, and Ij(y,) are numbers determined

through the integration. For details, we refer the reader
to Vanilek et al. [1986a}.

In the numerical integration over the inner and outer

zones, the integral is simply replaced by the following
summation;

J
I=RA4m) I Spa™(wj, wo) Agjj Ay, (39)
j=t

where Zg'j is the mean gravity anomaly for the jt cell
(xS or1°x 19, Aj is the area of the cell

A; =acosd;, (40)

with a being the size of the cell (5' or 1) in radians, and
. ¢; refer to the centre point of the cell.

93

The evaluation of Sy, ;m (yj, 6°) for each cell is a time
consuming task. It has to be done 572 times for the inner
zone and at least 164 times for the outer zone (for ¢ >
45%), or half as many times if advantage is taken of
longitudinal symmetry. We have hence decided to

approximate the modified spheroidal Stokes function by
the following linear form:

§2‘4—1"1(’% Yol =
Bo + Bi/w + B2 In (w/2) + B3 w2 In (wr2) .  (41)

Here, the coefficients are functions of y, and are selected
in such a way as to make S fit the modified kernel Sia™

as well as possible in the uniform (Tchebyshev) sense.

The selection has been done approximately — being
unaware of the existence of any rigorous algorithm — by
moving the four needed Tchebyshev interpolation nodes
until a good fit has been achieved. The resulting values:

Bo= - 32435,
By= 20,

By=  -3.449,
By= -173.24,

give for the six-degree radius of integration the
maximum relative errors in S less than 10-3. Tests
conducted on several sets of gravity anomalies showed
that errors in the geoid committed by using this
approximation are within 1 centimetre. Clearly,
alternative techniques exist. Their relative merits should
be investigated.

Integration for both the topographical effect (eqn.
(14)) and indirect effect (eqn. (20)) also have to be done
numerically. The topographical effect integral is
rewritten as

8gT = 12GoR? T (H2-Ha2)3 A (42)

where Hj, I, A; refer to the i*5 5' x 5' cell and the

summation extends over all cells with significant

contributions. Similarly, the indirect effect is evaluated
from:

3Ny =nGoyl Hy2 -
GoRZy /6 T (Hi2-Hp2)/i3 A, (43)

where, once more, 5' x 5' cells are used.
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7. GRAVITY DATA

The point gravity data used in this study come from
two files supplied by the Division of Gravity,
Geothermics and Geodynamics of the former Earth
Physics Branch of Energy, Mines and Resources Canada
[Hearty, 1985; 1986). The union of the two files contains
628 019 records, each consisting of ¢, A, Ag' (free-air
anomaly minus GEM9 modelled value), oag, H, oy. The
cbserved values of g are referred to 1GSN71, v refer to
GRS80, and the points fall into an area delimited by
parallels 40°N and 80°N and meridians 218°E and 320°E.
Both land and sea values are included.

The 5' x 5' mean gravity anomalies come from the
same source [ Winter, 1979}. The file, however, has been
updated by us by predicting additional means for about
3000 originally empty cells. These have been
determined as ordinary arithmetic means of values
contained in the point anomaly file. For each cell we

have: Ag' (the mean free-air anomaly corrected for
GEM9), 6 3, and H.

The 5" x 5' cells cover only the latitudinal belt
between 40°N and 56°N (214°E <A < 318°E). From
56°N to 76°N the size of the cells is extended to 5' x 10’
to maintain at least a resemblance of equi-areality.
Empty cells exist refiecting the lack of point gravity
values in certain areas. These empty cells, in turn, are
treated in such a way that if any one of them happens to
fall within the inner zone of Stokes's integration, i.e.,
within a 2° X 2° rectangle containing the point of
evaluation, the value of the corresponding 1° X 1° gravity
anomaly is used in the integration with a standard
deviation of 50 mGal.

FinalIy, the 1° x 1° mean anomalies were obtained
from the Department of Geodetic Science and Surveying
of Ohio State University (OSU). These data are termed
“The January 1983 1 x 1 Degree Mean Free-air Anomaly
Data” [Rapp, 1983a]. In our area of interest B3O°'N< ¢ <
80°N), (190°E < A < 340°E) there have been 185 cells
containing no other information except for the height.
For 24 of these, we were able to compute the mean
anomaly, again using the point gravity file. The standard
deviation is determined as half of the absolute value of
the computed mean anomaly corrected for the GEM9

contribution. The remaining empty cells are used in the
integration with Ag'equal to zero and G 3, equal to 50

mGal.

8. RESULTS

We have produced the geoid, i.e., the sum of GEM9
and the terrestrial gravity contribution, all referred to
the GRS80 on a 10 by 10 minute grid covering an area
of: 42°'N < <70°N, 219°E < A < 317°E. An example of
this solution for eastern Canada and part of the United
States is shown in Figure 5. Plotted at a larger scale, the
geoid looks, of course, much the same as other solutions
and we do not show it here. The estimated standard
deviation for the gravimetric part (medium and short
wavelength) ranges between 7 and 35 cm,

Comparisons with other, ‘independent’ solutions and
values yield the following:

(a) Rapp 1983 (180, 180) solution [Rapp, 1983b] — for
differences evaluated on a 1° x 1° grid, the mean
difference Ngapp - Nyng equals +94 cm with an
r.m.s. (with respect to that mean) of 106 cm. The
plot of these differences is shown in Figure 6.
Regarding this comparison, Rapp's solution is
referred to an ellipsoid with major semi-axis
probably one metre smaller than the GRS80
ellipsoid [Rapp, 1983b], which would explain the
94 ¢cm bias seen here. Also, a substitution of the
GEML?2 model {Lerch et al., 1982] for GEM9
would result in a significant reduction of the r.m.s.
quoted here [Rapp, 1986]. This aspect is now being
investigated.

(b) Wenzel GPM1 solution [Wenzel, 1985] truncated
for computational reasons to (180, 180) — for
differences evaluated on a 1° % 1° grid, the mean
difference Nwep - NUNB is +55 c¢m with an r.m.s. of
95 cm, These differences are plotted in Figure 7.

(c) Heights of 212 Doppler points in Canada [Geodetic
Survey of Canada, 1985] above the GRS80 minus
their orthometric heights — the mean difference is
+79 ¢m with an r.m.s. of 170 cm.

(d) OSU adjusted SEASAT altimetry [Rapp, 1982}
gridded at UNB [Vanilek et al., 1986b] in Hudson
Bay and the eastern Canadian offshore (for ¢ < 68°)
— for differences evaluated on 10 X 10 minute grid,
the mean difference is -19 cm with an r.m.s. ermor
of 65 cm. The differences, which can be interpreted
as the computed sea surface topography, are shown
in Figure 8.
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The differences under (a), (b), and (c) reflect the real
errors in our as well as the other solutions. Differences
from SEASAT altimetry reflect both the real errors and
sea surface topography. Some features discernible in
Figure 8 are clearly of physical origin and the real error

hence is smaller than 65 cm, probably considerably
smaller.

All the ‘independent’ solutions rely, in one way of
another, on satellite orbit perturbation analysis.
Therefore, the relatively good long wavelength
agreement cannot be used as an argument for the long
wavelength goodness of our solution, The positive bias
of our geoid compared to Wenzel's and to the Doppler
points is puzzling. It seems to be either totally absent or
at least considerably smaller in the comparison with
SEASAT altimetry. Even if one allows for the effect of
cooler than average water in the Canadian north and east,
the bias in sea surface topography should not reach more
than a few decimetres which would not bring the
SEASAT and Doppler indicated biases into coincidence.

9. CONCLUSIONS AND
ACKNOWLEDGEMENTS

The classical Stokesian solution reformulated for a
higher-order reference field combined with the GEM9
(20, 20) reference ficld have been used to produce a new
detailed gravimetric geoid for Canada on a 10" x 10
geographical grid. The solution shows some details
hitherto unknown.

The quality of the geoid is difficult to assess
objectively because there exists no solution that would be
truly independent at least in the long wavelength part of
the spectrum. The short wavelength part of our solution
looks fairly good — at least from the comparison with
SEASAT altimetry — and its accuracy seems (o be
realistically portrayed by the internal estimates of the
standard deviation.

The Stokesian solution, in addition to giving a decent
accuracy and to being physically straightforward, is also
computationally advantageous. The computation of
about 100 000 grid point geoidal heights took about 12
hours CPU time on the UNB IBM 3081 mainframe. The
solution on magnetic tape is available upon request from
the Geodetic Research Laboratory at UNB.

Other kinds of data, e.g., Doppler points, satellite
altimetry, and the deflections of the vertical, should be
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included in the solution. It is possible to produce
corrections to the gravimetric geoid reflecting the other
kinds of data, and we are now working on the
implementation of one such technique [Vaniek and
Kleusberg, 1986].

The work on the new geoid has been carried out at
UNB under the terms of a research contract with the
Geodetic Survey of Canada and the Natural Sciences and
Engineering Research Council of Canada Operating
Grant. We wish to acknowledge the contributions to this
work made by Messrs. R.<G. Chang, N. Christou, H.
Fashir, J. Mantha, M. Hofman, T. Kling and T.
Arsenault. Cooperation from the Geodetic Survey of
Canada Scientific Authority, Dr. D. Delikaraoglou and
the staff of the Division of Gravity, Geothermics and
Geodynamics of the Earth Physics Branch of Energy,
Mines and Resources Canada has been most appreciated.
The comments by two Manuscripta Geodaetica reviewers
and those received from R.H. Rapp have also been very
helpful. The first author was a Swedish Natural Science
Research Council Visiting Scholar at the Royal Institute
of Technology in Stockholm while preparing the final
version of the paper. The SNSRC's support, as well as
discussions with Prof. Dr. L.E. Sjoberg, are here
gratefully acknowledged. Our thanks go, last but not
least, to Ms. W. Wells for her, as usual, flawless
wordprocessing as well as language corrections.
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